# New Advances: Global Assimilation and Modeling

**Jeffrey Whitaker** 



The Ensemble Kalman Filter (EnKF): Weather and Climate Applications



### **Ensembles Provide Estimates of Forecast Error & Their Correlation Structure**

20-Member
Ensemble
Of Short-Term
Forecasts,
Showing
Uncertainty
In the Forecast
Position and
Structure of a
Hurricane
Vortex





#### The Ensemble Kalman Filter (EnKF)

• A method for improving data assimilation that uses uncertainty estimates from an ensemble (and produces an ensemble of analyses)



This shows the adjustment to a wind observation 1 m/s greater to the background (at dot) in EnKF and in more classical "3D-Var"

figure c/o Xuguang Wang, formerly CIRES/ESRL, now University of Oklahoma





# Part 1: Improving Weather Forecasts



### Track Errors, High-Resolution GFS/EnKF vs. Lower-Resolution Operational GFS/GSI-ET



higher resolution + EnKF = clear improvement





# Track Errors, High-Resolution GFS/EnKF vs. Operational ECMWF Ensemble



Competitive with ECMWF for Track Error (Comparable Resolution)





### Anomaly Correlation for Mean of EnKF Ensemble vs. NCEP Operational GSI + ET Perturbations



Large improvement in tropical wind scores – better TC steering?





# EnKF Partnership with NCEP/EMC & NASA/GMAO

- Test for possible future operational implementation at NCEP/EMC:
  - Future hybrid variational / EnKF system.
  - Replacement for current "ensemble transform" method of generating initial ensemble perturbations around control forecast.



### Part 2: Climate Applications



### Climate Reanalysis with Sparse Data

Reanalysis of the 1938 New England Hurricane using only p<sub>s</sub> obs





# Estimating Space and Time-Varying Uncertainty in Reanalyses

(20<sup>th</sup> Century Reanalysis Project, led by Gil Compo)





EnKF accurately captures changing uncertainty as observing network changes.



#### www.esrl.noaa.gov/psd/data/20thC\_Rean







#### **Future Directions**

- Operational & prototype product development:
  - Hybrid 4D-Var/EnKF system with NASA/GMAO and NCEP/EMC.
  - EnKF-based hurricane ensembles in "HFIP" program.
  - Higher-resolution 20<sup>th</sup>-century climate reanalyses
- Research & development issues
  - Unifying global and regional model code
  - Coupled ocean-atmosphere-land-chemistry EnKF reanalyses.
  - Model uncertainty and sampling error in EnKF





#### **Acknowledgments**

- We have benefited from collaborations with many university and lab colleagues, including:
  - Eugenia Kalnay, Takemasa Miyoshi, and Brian Hunt (U. MD);
  - Istvan Szunyogh and Liz Satterfield (Texas A&M)
  - Eric Kostelich (University of Arizona)
  - Fuqing Zhang (Penn State)
  - Ryan Torn (U. Albany)
  - Greg Hakim (U. Washington)
  - Xuguang Wang and Ming Xue (U. Oklahoma)
  - Chris Snyder and Jeff Anderson (NCAR)
  - Christian Keppenne (NASA)
  - Peter Houtekamer, Hersh Mitchell, and Mark Buehner (Canadian Meteorological Centre)
  - Craig Bishop, Carolyn Reynolds, and Jim Hansen (NRL)
  - Tomi Vukicevic, Altug Aksoy, and Sim Aberson (AOML)
  - ESRL colleagues Xue Wei, Phil Pegion, Mike Fiorino , Zoltan Toth and Nobuki Matsui





#### **Selected References**

- Hamill, T. M., and C. Snyder, 2000A hybrid ensemble Kalman filter / 3D-variational analysis scheme. *Mon. Wea. Rev.*, **128**, 2905-2919.
- Hamill, T. M., Whitaker, J. S., and C. Snyder, 2001: Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter. *Mon. Wea. Rev.*, 129, 2776-2790.
- Whitaker, J. S., and T. M. Hamill, 2002: Ensemble data assimilation without perturbed observations. *Mon. Wea. Rev.*, **130**, 1913-1924.
- Whitaker, J. S., G. P. Compo, X. Wei, and T. M. Hamill, 2003: Reanalysis without radiosondes using ensemble data assimilation. *Mon. Wea. Rev.*\_, 132, 1190-1200.
- Hamill, T. M., 2006: Ensemble-based atmospheric data assimilation Chapter 6 of *Predictability of Weather and Climate*, Cambridge Press, 124-156.
- Compo,G.P., J.S. Whitaker, and P.D. Sardeshmukh, 2006: Feasibility of a 100 year reanalysis using only surface pressure data. *Bull. Amer. Met. Soc.*, 87, 175-190.
- Wang, X., D. M. Barker, C. Snyder, and T. M. Hamill, 2008: A hybrid ETKF-3DVAR data assimilation scheme for the WRF model. Part II: real observation experiments. *Mon. Wea. Rev.*, **136**, 5132-5147.
- Whitaker, J. S., T. M. Hamill, X. Wei, Y. Song, and Z. Toth, 2008: Ensemble data assimilation with the NCEP Global Forecast System. Mon. Wea. Rev., 136, 463-482.
- Whitaker, J.S., G.P. Compo, and J.N. Thépaut, 2009: A Comparison of Variational and Ensemble-Based Data Assimilation Systems for Reanalysis of Sparse Observations. *Mon. Wea. Rev.*, 137, 1991–1999.
- Wang, X., T. M. Hamill, J. S. Whitaker, C. H. Bishop, 2009: A comparison of the hybrid and EnSRF analysis schemes in the presence of model error due to unresolved scales. *Mon. Wea. Rev.*, 137, 3219-3232.





#### T382 deterministic track forecasts from

- (1) mean of EnKF ensemble
- (2) deterministic from EnKF mean initial condition, and
- (3) deterministic from "parallel" T382 GFS/GSI







#### **How the NOAA EnKF Works**





#### The Deterministic Serial EnKF – A Recipe

Given a single ob y<sup>o</sup> with expected error variance R, an ensemble of model forecasts  $\mathbf{x}^b$  (model priors), and an ensemble of predicted observations  $\mathbf{y}^b = \mathbf{H}\mathbf{x}^b$  (observation priors):

**Step 1**: Update observation priors.

$$(1a)\overline{\mathbf{y}}_{a} = (1 - K)\overline{\mathbf{y}}_{b} + Ky^{o}$$
$$(1b)\mathbf{y}'_{a} = \sqrt{(1 - K)}\mathbf{y}'_{b}$$

update for ob prior means rescaling of ob prior perturbations

where the scalar  $K = var(y^b)/(var(y^b) + R)$ , overbar denotes means, prime denotes perturbations, superscript b denotes prior, a denotes analysis.

**Linear interpolation between observation and observation prior mean** with weight K (o<=K<=1), rescaling of observation prior ensemble so posterior variance is consistent with Kalman filter, i.e.  $var(y^a)=(1-K) var(y^b)=var(y^b)R/(var(y^b)+R)$ .

when  $var(y^b) \ll R$ , all weight given to prior. when  $var(y^b) \gg R$ , all weight given to observation.



### The Serial EnKF - A Recipe (2)

**Step 2**: Update model priors.

Let  $\Delta x = x^a - x^b$  be analysis increment for model priors,  $\Delta y = y^a - y^b$  is analysis increment for observation priors.

(2) 
$$\Delta x = G\Delta y$$
 computation of increments to model prior

where  $\mathbf{G} = \text{cov}(\mathbf{x}^{\text{b}}, \mathbf{y}^{\text{bT}})/\text{var}(\mathbf{y}^{\text{b}})$ 

#### Linear regression of model priors on observation priors.

Only changes model priors when  $x^b$  and  $y^b$  are correlated within the ensemble.

If there is more than one ob to be assimilated, the observation priors for other obs  $(\mathbf{Y}^b)$  should be also be updated using  $(\mathbf{z})$  with  $\Delta \mathbf{x}$  replaced by  $\Delta \mathbf{Y}$ . Next iteration, replace  $\mathbf{y}^b$  with next column of  $\mathbf{Y}^b$ , removing that column from  $\mathbf{Y}^b$ . After each iteration the model priors and observation priors are set to the latest analysis values  $(\mathbf{x}^a$  replaces  $\mathbf{x}^b$ ,  $\mathbf{Y}^a$  replaces  $\mathbf{Y}^b$ ). Continue iterating until  $\mathbf{Y}^b$  is empty.



### Example: 500-hPa Height Analyses Assimilating Only p<sub>s</sub> obs

Whitaker et al 2009: June MWR

Black dots show 300+ surface pressure observation locations (similar to 1930's network)

Full NCEP operational analysis (3D-Var) 1000000+ obs



EnKF only 300+surface pressure obs



ECMWF 3D-Var only 300+surface pressure obs

